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The calculation of the Riemann Curvature from the deviation of a vector 
undergoing parallel transport around a closed loop takes a very simple form 
when expressed in generalized geometrical notation. We discuss the parallel 
transport of a vector and the type of closed loop used in the calculation. Our 
method generalizes similar work of Morganstern, to nonholonomic coordinates 
and non-Riemannian space-times. 

1. I N T R O D U C T I O N  

Central to the understanding of curvature in non-Riemannian space- 
times, i.e., space-times with independent metric and affine connection, is the 
concept of autotransport  of a vector along a path (Hehl et al., 1976). In a 
Riemannian space-time this is identical to parallel transport. Curvature can 
then be interpreted as the measure of the deviation of a vector transported 
around a closed path. We show here how the coordinate free notation of 
differential geometry simplifies this calculation and clarifies several miscon- 
ceptions. 

We point out that giving a space-time independent metric and connec- 
tion is equivalent to giving it torsion (related to the antisymmetric part  of 
the affine connection) and nonmetricity (related to the nonzero covariant 
derivative of the metric). In what follows we will not need these details, but 
only the method by which one constructs the covariant derivative. 

Morganstern (1977) has correctly pointed out that the standard demon- 
strations of parallel transport do not include terms that are second order in 
the differentials, du. However, the calculation of the curvature obtained by 
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the transport of a vector around a closed path is necessarily second order in 
the differentials. For example, in the transport of the vector v along the 
curve described by the tangent vector u = d/d~, the rate of change of v 
with respect to h (called the covariant derivative of v along u) is given in 
terms of the transport of v(h 0 + A?~) back to ?% by 

A v = limAx--0{ [V(?% + A~,) transport to ?%] --v(;ko) }/A% (1) 

[Throughout this paper we will use the geometrical notation of Misner, 
Thorne, and Wheeler (1973), p. 249.] Equation (1) should be compared with 
the usual definition (Morganstern, 1977) of the change in a vector og when 
it is transported by an infinitesimal distance A?~ along a path u-'(?~), 

= - r j v k u l A X  (2) 

where Fij k is the affine connection. The link-up with the geometrical 
notation (Misner et al., 1973, p. 249) is given by 

= uJvk ; j ek  (3) 

where Fuk is the affine connection of the spacetime and the semicolon 
denotes covariant differentiation. This should be compared with the nota- 
tion of Schouten (1954) 

V,,v k = uJvk;j (4) 

The action of the two "different" covariant derivatives, V,, should not be 
confused by the reader. We will, in this article, always mean the former, 
described by equation (3). 

Pictorially, as in Figure 1, we can think of the process described by 
equation (1) as the expansion of the transported vector [written v,, (~0 + A?~)] 

v,, (x0 + 6x)  = v(x0)+ v V(Xo) 

= (1 + V,)v(h0)  (5) 

Unfortunately this definition of the transport of a vector does not, as shown 
by Morganstern (1977), give the correct results for the transport of v along u 
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v ( x c + d x )  

_ ~ ( x ~  ~o+d ~ ~ , 'x 

Fig. 1. Parallel transport of the vector v(x) in the direction u from the point x o to x0 + dx. 
The transported vector, v,, (Xo + dx), is the vector V(Xo) plus the correction called the covariant 
derivative of v along u. 

and back along - u .  We can write the latter as 

v,, (xl - ax) = V(Xl) + v _ or(X1) 

= (1+ v_.)v(k 1) (6) 

However, v(~.l) must be the vector obtained by the transport of v(~.o) to the 
point 2,1 = ~o + Ak given by equation (5). so that for the round trip 

v,, (~'o) = v,, (X, - AX) = (1 + V _. ) (1  + V.)v(Xo)  

= (1-  vov.)v(Xo) (7) 

There is a second-order correction which will lead to an erroneous correc- 
tion to the curvature for a vector transported around a nontrivial area 
described by two nonparallel vectors. Therefore, the transport law, correct 
to second order in differentials, should read 

v,, (~.o + A~ ) = (1+  V.  + }V.V.)V(Xo) (8) 
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Because of the geometrical notation, this form of the transport law, which is 
compatible with that of Morganstern (1977), also contains the transport of 
the covariant derivative along u. The round trip calculation described by 
equation (7) now reads 

v,, (1 + v _ .  + v_, ,v_, , ) ( l+  v .  + } v,,v,,)v(7.o) 

= (9) 

[One could easily surmise that the "exact" form of the parallel transport law 
is (Schouten, 1954, p. 131) 

v(7, o + Ak) = exp(V,,)V(ho) (lO) 

Then equation (9) would yield v ,, (h0) = v(h0) exactly. In what follows, we 
will only retain terms to second order as discussed above.] 

We now apply equation (8) to the transport of a vector around a closed 
circuit. 

2. RIEMANN TENSOR FROM THE TRANSPORT OF A 
VECTOR 

Consider the transport of a vector v(x) around a closed loop con- 
structed from two nonparallel vector fields a and b at x 0 as shown in Figure 
2. In general, a(x2) may be different from the parallel transport of a(x0) to 
the point x 2. These two concepts must be distinguished in the calculation of 
the Riemann tensor which is obtained from the transport of the vector v 
around a closed loop. 

In the former case, the loop is constructed from the vector fields of a 
and b and the coordinate systems which they drag along (Schouten, 1954; pp. 
102-104). Because of the distortion of the geometry, the path formed by 
a(x0) + b(xl), where b(xl) is the point transformation of b along a(x0), 
and b(x0) + a(x2) may not be close. The vector e which closes the curve, 
called the closer of quadrilaterals (Misner et al., 1973; p. 236), is 

c =  [b,a] (11) 

The vector e is also called the Lie derivative of the vector field a with respect 
to the vector field b: 

s = [b,a] (12) 
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Fig. 2. The parallelogram formed by the vector fields a(xo),b(xo),a(x 2) at the tip of b(.xo), 
and b(xl) at the tip of a(xo). The vector e = [b,a], is called the closer of quadrilaterals. The 
process of expanding the fields a(x 2) and b(xl) about the point x o to obtain the value of e is 
called the dragging of coordinate frames by the vector fields. For holonomic coordinates, c = 0. 

For  a set of  basis vectors (e~ }, the commuta to r  takes the form (Misner et al., 
1973, p. 239) 

0, holonomic  coordinates 

[ei ,ej]  = cijkek ' nonholonomic  coordinates 
(13) 

k where the tensor C~ measures the noncommuta t iv i ty  of  the basis. The 
k 1 k "/ quant i ty  f~ji = ~-Cij" is called the object of anholonomy (Schouten, 1954, p. 

100) and is used by those who express the basis vectors in terms of  tetrads. 
An  excellent and readable introduct ion to the use of  tetrads and their 
relationship to anholonomic  coordinates  has been presented by Gogala  
(1980), ~ who has successfully deciphered the various notat ions used. 

For  comparison,  we discuss the closed loop obtained from parallel 
transport .  In  Figure 3, we note that the parallel t ransport  of  the vector b(x~) 
back along - a  to the point  x 0 is the vector b , ( x 0 ) w h i c h  is located at the 
point  x~, 

b,, (x0)  = [1 + v a ] b ( x l )  (14) 

~Note that equation (1.6) for the commutator of two vectors is not valid in the anholonomic 
frame. 
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Fig. 3. Nonclosure of quadrilaterals formed by parallel transport compared with dragging of 
coordinate frames. The parallelogram formed by parallel transport is closed by the torsion 
vector T(a,b). Note that even in the case of vanishing torsion, the quadrilaterals formed by 
parallel transport and the dragging of coordinate frames are in general different. They agree 
only in the case of holonomic coordinates in torsion-free space-times. 

where the second-order term has been neglected for the moment. In general, 
the figure described by two parallelly transported vectors does not close. 
The vector which measures the difference between two parallelly trans- 
ported vectors a and b is called the torsion vector T(a,b) (Hehl et al., 1976). 
From Figure 3, it is easy to see that the torsion is given by 

T(a,  b) = v ~ ( b ) -  Vb(a ) - [ a , b ]  (15) 

Thus in a space-time in which the torsion vanishes, the closer of quadrilater- 
als, constructed either by parallel transport or by the dragging of coordi- 
nates (i.e., Lie transport), is identical. However for space-times with torsion 
this does not happen in general. In this case, the commutator could vanish 
(holonomic coordinates and zero Lie derivative) so that the parallelogram 
formed by the vector-field closes; yet, that formed by parallel transport does 
not. 
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The question is, which closed loop should one use to calculate the 
Riemann tensor? We can answer this question by noting that the Riemann 
curvature tensor is a measure of the tidal force that arises in geodetic 
deviation between neighboring geodesics. It is the tangent to the geodesics 
which is transported along the geodesics, across to neighboring geode- 
sics and back. The geodesics are not transported to one another. We then 
see that the Riemann curvature tensor is obtained from the deviation of a 
vector parallelly transported around the closed loop built up out of the 
vector fields and the coordinate systems dragged along. By definition, the 
Riemann curvature tensor gives the negative of this deviation (Misner et al., 
1973, p. 277) 

- 8v = - [v, ( x 0 ) - v ( x 0 )  ] = ~ ( a , b ) v  (16) 

where ~ (b ,  a) is the curvature operator. Utilizing equation (8), the transport 
of the vector v counterclockwise around the path of Figure 2 gives 

v,, ( X o ) =  (1 + Vb+l/2VbVb)(1 + V. + �89 VoV~)(1 + V_tb.al)  

•  V_b  + � 8 9  V_~ + �89 

= (1 + [ V b ,  V , ] +  V _tb.,l }V(Xo) (17) 

Therefore, the curvature operator becomes 

~ ( a , b )  = [ V~. V b ] -  Vl~.b ] 

In terms of a set of basis vectors { e i ) which may be nonholonomic, 

~ (e / , e j ) ek  = [Vi. V j ] e k -  Vle , , e j ]ek  

= v, ( r 'kje , )-  Vj ( r ' , , e , ) -  G/V,e,  

= (2s  k t j . i l  I , ,  "" t F "  "~e m + 2 F k l j F L l l i l - - ~ " i j  k l }  m 

= Rmk i j em  

which is the standard form of the Riemann curvature tensor. 

(18) 

(19) 

3. C O N C L U S I O N S  

The simple statement that the Riemann curvature tensor is propor- 
tional to the deviation between a vector and the same vector parallelly 
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transferred around a closed loop has been shown to be fraught with 
complications. This statement is subscribed to by most texts but rarely is the 
deviation calculated explicitly, as is pointed out by Morganstern (1977), 
who also showed that most physics texts about relativity do not develop the 
law of parallel transport with sufficient accuracy to actually carry out 
the implied calculation. Instead, the calculation that we generally find is the 
difference between the vector v parallelly transported along the path a +b  
and then b + a  (see Figure 2). This begs the question of what we are 
comparing and ignores totally the closure of the quadrilateral, which would 
have to be put in by hand (Misner et al., 1973, p. 277). Here we differ from 
Morganstern (1977) in that in nonholonomic coordinates, the closure of the 
quadrilateral term will yield terms of the order of the area of the quadri- 
lateral that contribute to the Riemann curvature [see equation (19)]. 

Finally, we argue that the correct path is the quadrilateral constructed 
from the vector fields and the coordinates which are dragged along, i.e., the 
expansion of the vectors in terms of the reference point. Combining this 
closed path with the simple, geometrical description of the parallel transport 
of a vector, equation (8), we quickly obtain the general form of the 
curvature which, because of the generalized notation used, is valid for 
holonomic or anholonomic coordinates in a space-time with or without an 
independent affine connection. 
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